Baryon Acoustic Oscillations and SDSS DR7

Antoine Labatie (SAp, CEA Saclay)

PhD Supervisors: Jean-Luc Starck (SAp, CEA Saclay) Marc Lachièze-Rey (APC)

Plan

- Introduction on BAOs
- BAO detection with classical χ^2 statistic
- Our new method for BAO detection
- Results on SDSS simulations
- Results on SDSS data (in progress)
- Conclusion

Introduction on Baryon Acoustic Oscillations

Baryon Acoustic Oscillations

Animation by Daniel Eisenstein

• Sound wave excited in the primordial plasma at speed $c/\sqrt{3}$

 Wave stops at recombination at sound horizon scale
 rs ≈150 Mpc

Galaxies form in peaks

Excess of correlation

BAOs as standard ruler in galaxy surveys (I)

Figure from Daniel Eisenstein

- In reality waves originate from everywhere and superpose
- Only 1% statistical effect
- Can only be seen statistically ----> require large survey volume

BAOs as standard ruler in galaxy surveys (II)

Galaxy surveys are redshift surveys
 —> one assumes a
 fiducial cosmology to convert to 3D volume

Circular object when fiducial cosmology is correct

Wrong size and shape when fiducial cosmology is wrong

BAOs give a standard ruler (known real size)
 they show how incorrect the fiducial cosmology is

BAOs in correlation function $\xi(r)$

- We consider 3 parameters in our analysis:
 - Matter density $\boldsymbol{\Omega}_{m} h^{2}$
 - horizon at matter-radiation equality
 - amplitude of BAO peak
 - Effect of wrong fiducial cosmology \approx dilation factor $\alpha = D_V / D_V^{fid}$

$$D_V(z) = \left[D_M(z)^2 \frac{cz}{H(z)} \right]^{1/2}$$

- Effect of σ_8 and galaxy bias \approx amplitude factor b^2
- → Detection of BAOs at expected scale confirms ACDM model
- BAOs constrain α with standard ruler property

Different ξ curves with $\Omega_m h^2 = 0.12, 0.13, 0.14$ (green, red, blue) and non physical no-BAO model (pink) (Eisenstein et al. 2005)

I) BAO detection with classical χ^2 method

Statistical Hypothesis testing

Test between 2 hypotheses *H*₀ and *H*₁ from a measurement *X* using a test statistics *t*(*X*)

- Statistical test of size α
 - If $t(X) > \eta$ then accept H_1
 - If $t(X) \leq \eta$ then accept H_0
- More common in cosmology:
 probability under H₀ that t(X)
 > observed value

BAO detection with classical χ^2 method (I)

• If measurement is the correlation function: $\hat{\xi} = (\hat{\xi}_i)_{1 \le i \le n}$

BAO detection with classical χ^2 method (II)

• The test statistic $\Delta \chi^2$ is a generalized likelihood ratio

$$\Delta \chi^{2} = \min_{\theta} \chi^{2}_{noBAO,\theta} - \min_{\theta} \chi^{2}_{BAO,\theta}$$
$$= -2 \left[\max_{\theta} \ln \left(\mathcal{L}_{noBAO,\theta} \right) - \max_{\theta} \ln \left(\mathcal{L}_{BAO,\theta} \right) \right]$$
$$= -2 \ln \left[\frac{\max_{\theta} \mathcal{L}_{noBAO,\theta}}{\max_{\theta} \mathcal{L}_{BAO,\theta}} \right]$$

- Large values of $\Delta \chi^2$ favor H_1 \rightarrow significance is probability under H_0 that $\Delta \chi^2$ > observed value
- Given some assumptions:

$$\Delta \chi^2 \leq X^2$$
 with $X \sim \mathcal{N}(0,1)$ under \mathcal{H}_0

• Significance can be estimated as $P(X^2 > \Delta \chi^2)$, i.e. as $\sqrt{\Delta \chi^2} . \sigma$

BAO detection with classical χ^2 method (III)

- Problems:
 - Assumptions of the method are wrong: $\sqrt{\Delta\chi^2}.\sigma$ overestimates the significance

	χ^2_1	$\Delta\chi^2$
$P(X \ge 1.0) P(X \ge 2.25) P(X \ge 4.0) P(X \ge 6.25) P(X \ge 9.0)$	$\begin{array}{c} 0.32(1\sigma) \\ 0.13(1.5\sigma) \\ 4.5\times10^{-2}(2\sigma) \\ 1.2\times10^{-2}(2.5\sigma) \\ 2.7\times10^{-3}(3\sigma) \end{array}$	$\begin{array}{c} 0.39(0.85\sigma)\\ 0.18(1.35\sigma)\\ 6.8{\times}10^{-2}(1.8\sigma)\\ 2.1{\times}10^{-2}(2.3\sigma)\\ 4.3{\times}10^{-3}(2.85\sigma) \end{array}$

• The method cannot work for model-dependent covariance matrix:

$$\mathcal{H}_{0}: \exists \theta \in \Theta \text{ s.t. } \hat{\xi} \sim \mathcal{N}\left(\xi_{noBAO,\theta}, C_{noBAO,\theta}\right)$$
$$\mathcal{H}_{1}: \exists \theta \in \Theta \text{ s.t. } \hat{\xi} \sim \mathcal{N}\left(\xi_{BAO,\theta}, C_{BAO,\theta}\right)$$

II) Our new method for BAO detection

Our new method for BAO detection (I)

- New procedure to estimate significance, which works in all cases
 - We generate realizations of every model (H_0, θ)

 $\hat{\xi} \sim \mathcal{N}\left(\xi_{noBAO,\theta}, C_{noBAO,\theta}\right)$

- This gives significance functions for individual model (H_0, θ) $P(\Delta \chi^2 \ge x | \mathcal{H}_0, \theta)$
- The significance is given by the "worst case" H_0 model

$$p(x) = \max_{\theta \in \Theta} P(\Delta \chi^2 \ge x \,|\, \mathcal{H}_0, \theta)$$

Our new method for BAO detection (II)

- Change of the statistic
 - $\Delta\chi^2$ is not a generalized likelihood ratio for model-dependent covariance matrix

$$\mathcal{L}_{BAO,\theta} \propto |C_{BAO,\theta}|^{-1/2} e^{-\frac{\chi^2_{BAO,\theta}}{2}}$$
$$\mathcal{L}_{noBAO,\theta} \propto |C_{noBAO,\theta}|^{-1/2} e^{-\frac{\chi^2_{noBAO,\theta}}{2}}$$

• We use Δl instead of $\Delta \chi^2$ to keep a generalized likelihood ratio

$$\Delta l = \min_{\theta} l_{noBAO,\theta} - \min_{\theta} l_{BAO,\theta}$$
$$l_{BAO,\theta} = \chi^2_{BAO,\theta} + \ln |C_{BAO,\theta}|$$
$$l_{noBAO,\theta} = \chi^2_{noBAO,\theta} + \ln |C_{noBAO,\theta}|$$

III) Results on SDSS simulations

SDSS LRG survey

- 8 year program with 2.5m telescope at Apache point (New Mexico)
- SDSS DR7, last release of SDSS II
- Sample that we use (Kazin et al. 2010)
 - Spectroscopic LRG sample with 105k galaxies
 - Quasi volume-limited up to z=0.36
 - Magnitude-limited for 0.36<z<0.47
- SDSS DR9 publicly released in July 2012

Dec

Description of the simulations (I)

• Simple Gaussian realizations (Gaussian assumption well verified with LN realizations)

 $\hat{\xi} \sim \mathcal{N}\left(\xi_{noBAO,\theta}, C_{noBAO,\theta}\right)$ $\hat{\xi} \sim \mathcal{N}\left(\xi_{BAO,\theta}, C_{BAO,\theta}\right)$

Models of correlation function:

$$\xi_{BAO,\theta}(r) = b^2 \,\xi_{BAO,\Omega_m h^2}(\alpha \, r)$$

$$\xi_{noBAO,\theta}(r) = b^2 \,\xi_{noBAO,\Omega_m h^2}(\alpha \, r)$$

- Covariance matrix:
 - Case 1: Constant covariance matrix *C*
 - Case 2: Simple example of Model-dependent covariance matrix

$$C_{noBAO,\theta} = C_{BAO,\theta} = \left(\frac{b}{b_0}\right)^4 C$$

• Where does the covariance matrix *C* come from ?

Description of the simulations (II)

- We use lognormal simulations of the SDSS DR7 LRG sample to obtain a reasonable covariance matrix C
- We obtain covariance matrix *C* as the empirical covariance matrix of 2000 lognormal simulations

Average significance for BAO detection under H_1

- Comparison of 3 methods:
 - Classical χ^2 method with estimate $\sqrt{\Delta\chi^2}.\sigma$
 - Rigorous estimate with $\Delta\chi^2$
 - Rigorous estimate with Δl (our new method)

	Classical χ² method (wrong)	$\Delta \chi^2$ statistic with correct significance	Δ <i>l</i> method
Constant covariance matrix	2.21σ	2.0σ	2.0σ
Model-dependent covariance matrix	2.32σ	1.59 σ	1.96 0

Effect of model-dependent covariance matrix in constraints

• Cosmological parameter constraints

$$p(\Omega_m h^2, lpha \,|\, \hat{\xi}) \propto \int \mathcal{L}_{BAO,(\Omega_m h^2, lpha, B)} dB$$

• Example with expected correlation from simulations

Results on SDSS data (work in progress)

New procedure for simulations

- New procedure to compute model-dependent C_{θ}
 - Generate 2000 simulations for each value Ω_m h²=0.08, 0.105, 0.13, 0.155, 0.18
 - Geometric parameter α taken into account by introducing a selection function ϕ_{α} (0.8< α <1.2)
 - *b* is well approximated by a factor b⁴ in the covariance matrix
 when changing b₁=2.5 to b₂=3.0 we find that (b₂/b₁)⁴ C₁ is 10 times closer to C₂ than C₁

Structure of the covariance matrixEffect of α Effect of $\Omega_m h^2$

• Only the diagonal of *C* is really affected

• The whole covariance matrix is affected by variations of $\Omega_m h^2$

BAO detection in SDSS DR7 LRG

- We can observe the BAO peak
- However it is not well localized:
 - very weak BAO detection $\Delta \chi^2 = 0.92$ (but in agreement with expectation under $H_1 : \Delta \chi^2 = 7.5 + / 8.9$)
 - real significance with $\Delta \chi^2$ and Δl ??

Correlation in BOSS DR9

Parameter constraints with SDSS DR7 LRG

- Constraints are tighter with model-dependent covariance matrix
- No shift in the maximum likelihood

Conclusions

Conclusions

- New method for BAO detection (Δl method)
 - Rigorous
 - Works even with model-dependent covariance matrix
- New procedure for obtaining realistic model-dependent covariance matrix
- Consequence of model-dependent covariance matrix for SDSS DR7 LRG sample
 - Does not change much BAO detection \longrightarrow weak signal
 - Seems to tighten cosmological constraints