A new method for detecting Baryon Acoustic Oscillations, Astrophysical Journal, 746, 172

Antoine Labatie, Jean-Luc Starck, Marc Lachièze-Rey

CEA Saclay, IRFU/SEDI-SAP, Service d'Astrophysique, 91191 Gif-sur-Yvette, France

antoine.labatie@cea.fr

Physics of BAOs

- Competition between gravitation and photon pressure in the primordial plasma \rightarrow sound waves excited at speed $c/\sqrt{3}$
- Wave stops at recombination at sound horizon scale $r_s \approx 150 Mpc$ (well constrained by CMB)
- Galaxies form in matter density peaks \rightarrow excess of correlation at that scale

- Only a 1% statistical effect
- Can only be seen statistically \rightarrow requires a large volume

BAOs as standard ruler (I)

Superpositon of waves. Figure by Daniel Eisenstein.

Left: Very dense rings of galaxies superposed. Right: Less dense rings superposed. The scale of the rings can only be recovered statistically. Figure from Bassett & Hlozek 2009.

Figure by Daniel Eisenstein

• Galaxy surveys are redshift surveys \rightarrow one must assume a **fiducial cosmology** to convert redshift into distances and obtain 3D volume

Top: Real object for redshift separation Δz and angle on the sky $\Delta \theta$. Bottom: Distorted object as observed in the fiducial cosmology.

• BAOs are a **standard** ruler, i.e. have a know real size \rightarrow show how incorrect the fiducial cosmology is

Standard ruler distorted by wrong fiducial cosmology.

- 3 parameters in the correlation function
- $\theta = (\Omega_m h^2, \alpha, b)$
- $\Omega_m h^2$ controls global shape of the correlation and amplitude of BAO peak
- α gives a dilation of the correlation function due to incorrect fiducial cosmology
- b^2 is a constant amplitude factor
- \rightarrow Detection of BAOs at expected scale confirms cosmological paradigm
- \rightarrow BAOs constrain parameter α with the standard ruler property

Correlation functions with $\Omega_m h^2 = 0.12, 0.13, 0.14$ (green, red, blue) and non physical no-BAO model (pink). Figure from Eisenstein et al. 2005.

Question
HOW DO WE DETECT BAOs ?

BAO detection = Hypothesis testing

Classical method for BAO detection

 $\mathcal{H}_0: \exists \theta \in \Theta \text{ such that } \hat{\xi} \sim \mathcal{N}(\xi_{noBAO,\theta}, C_{noBAO,\theta})$ $\mathcal{H}_1: \exists \theta \in \Theta \text{ such that } \hat{\xi} \sim \mathcal{N}(\xi_{BAO,\theta}, C_{BAO,\theta})$

- Statistical test of size α with test statistic $t(\hat{\xi})$
- if $t(\hat{\xi}) > \eta$ then accept \mathcal{H}_1
- if $t(\hat{\xi}) \leq \eta$ then accept \mathcal{H}_0
- More common in cosmology
- \rightarrow Significance = proba under \mathcal{H}_0 that $t(\hat{\xi}) >$ observed value

• Assumes constant covariance matrix $C = C_{BAO,\theta} = C_{noBAO,\theta}$ • test statistic = generalized likelihood ratio $\Delta \chi^2(\hat{\xi})$ $\Delta \chi^2 = \min_{\theta} \chi^2_{noBAO,\theta} - \min_{\theta} \chi^2_{BAO,\theta}$ $= -2\log\left[\frac{\max_{\theta} \mathcal{L}_{noBAO,\theta}}{\max_{\theta} \mathcal{L}_{BAO,\theta}}\right]$ • Large values of $\Delta \chi^2$ favor \mathcal{H}_1 \rightarrow Significance = proba under \mathcal{H}_0 that $\Delta \chi^2 >$ observed value • Given some assumptions: $\Delta \chi^2 \leq X^2$ with $X \sim \mathcal{N}(0, 1)$ under \mathcal{H}_0

• Significance can be estimated as $P(X^2 > \Delta \chi^2)$ i.e. as $\sqrt{\Delta \chi^2} . \sigma$

Problems

- Regularity assumptions are usually not verified $\rightarrow \sqrt{\Delta \chi^2} \sigma$ overestimates the significance
- The method can work only for constant covariance matrix C and **not for** model-dependent $C_{noBAO,\theta}, C_{BAO,\theta}$

New method for BAO detection: Δl method

• New procedure to estimate significance (works in all cases) • We generate realizations of every model θ in \mathcal{H}_0

 $\hat{\xi} \sim \mathcal{N}(\xi_{noBAO,\theta}, C_{noBAO,\theta})$

• We compute the significance for every \mathcal{H}_0 model and every x

 $P(\Delta \chi^2 \ge x \,|\, \mathcal{H}_0, \theta)$

- BAO detection significance given by the 'worst case' \mathcal{H}_0 model: $p(x) = \max_{\theta} P(\Delta \chi^2 \ge x \,|\, \mathcal{H}_0, \theta)$
- Instead of $\Delta \chi^2$ we use Δl , which is still a generalized likelihood ratio for model-dependent covariance matrix

 $\Delta l = \min_{\theta} l_{noBAO,\theta} - \min_{\theta} l_{BAO,\theta}$ $l_{BAO,\theta} = \chi^2_{BAO,\theta} + \log |C_{BAO,\theta}|$ $l_{noBAO,\theta} = \chi^2_{noBAO,\theta} + \log |C_{noBAO,\theta}|$

• We use lognormal simulations of the SDSS DR7 LRG sample

 \rightarrow deduce constant covariance matrix C and model-dependent covariance matrix C_{θ}

• We test the different BAO detection methods

	Classical $\sqrt{\Delta \chi^2}.\sigma$ (wrong)	$\Delta \chi^2$ with correct significance	Δl method	
Constant cov matrix C	2.21σ	2.0σ	2.0σ	
Model-dependent cov matrix C_{θ}	2.32σ	1.59σ	1.96σ	
Table: Mean significance obtained on \mathcal{H}_1 realizations in the two different cases of constant C and model-dependent C_{θ}				

 $\sqrt{\Delta \chi^2} \sigma$ slightly overestimates significance for constant C

 $\sqrt{\Delta \chi^2} \sigma$ grossly overestimates significance for model-dependent C_{θ}

 $\Delta l \ statistic \ largely \ outperforms \ \Delta \chi^2 \ statistic \ for \ model-dependent \ C_{\theta}$