BAO study with model-dependent covariance matrix C_{θ}

Antoine Labatie (SAp, CEA Saclay)

PhD Supervisors: Jean-Luc Starck (SAp, CEA Saclay) Marc Lachièze-Rey (APC)

Plan

I) Introduction on BAOs

II) SDSS survey and simulations

III) BAO detection

IV) BAOs for cosmological parameter constraints

Conclusion

2

I) Introduction on Baryon Acoustic Oscillations

Baryon Acoustic Oscillations (I)

Animation by Daniel Eisenstein

• Sound wave excited in the primordial plasma at speed $c/\sqrt{3}$

 Wave stops at recombination at sound horizon scale
 rs ≈150 Mpc

Baryon Acoustic Oscillations (II)

- Waves originate from everywhere and superpose
- Only 1% statistical effect

Figure from Daniel Eisenstein

Gravitational evolution to large-scale structures

BAOs = standard ruler

• Galaxy surveys are redshift surveys \longrightarrow one **assumes a fiducial cosmology** to obtain 3D volume: $D_{\rm C} = D_{\rm H} \int_0^z \frac{dz'}{E(z')}$

BAOs give a standard ruler (known real size)
 they show how incorrect the fiducial cosmology is
 ADA7 Conference -- Cargèse, Corsica -- May 2012

Detection of BAOs at expected scale confirms ΛCDM model

(theoratical prediction by Peebles in 1970)

BAOs constrain α with standard ruler property

II) SDSS survey and simulations

SDSS LRG survey

- 8 year program with 2.5m telescope at Apache point (New Mexico)
- SDSS DR7 in 2008, last release of SDSS II
- BOSS DR9 only public in July 2012
- Sample used: (Kazin et al. 2010)
 - Spectroscopic LRG sample with 105k galaxies
 - Redshift range: 0.16<z<0.47

- We need ≈ 2000 lognormal simulations for each θ (very time consuming)
- We have developed new fast technique to obtain realistic covariance matrices depending on $\theta = (\alpha, \Omega_m h^2, b)$
- We use our simulations only to get model-dependent C_{θ}

Structure of C_{θ} Effect of α

Effect of $\Omega_m h^2$

SDSS Correlation function estimation

III) BAO detection

What does it mean to verify the existence of BAOs ?

Statistical Hypothesis testing

• Test between 2 hypotheses H_0 and H_1 from a measurement ξ using a test statistics $t(\xi)$

- Statistical test of size α
 - If $t(\xi) > \eta$ then accept H_1
 - If $t(\xi) \leq \eta$ then accept H_0
- More common in cosmology:
 p-value α under H₀ that t(ξ) > observed value

BAO detection with classical χ^2 method (I)

15

BAO detection with classical χ^2 method (II)

• Test statistic $\Delta \chi^2$ is a generalized likelihood ratio (NP lemma) $\Delta \chi^2 = \min \chi^2_{\text{marger}} + \cos \phi - \min \chi^2_{\text{RAO}} \phi$

$$egin{aligned} \Delta\chi^2 &=& \min_{ heta}\chi^2_{noBAO, heta} - \min_{ heta}\chi^2_{BAO, heta} \ &=& -2\ln\left[rac{\max_{ heta}\mathcal{L}_{noBAO, heta}}{\max_{ heta}\mathcal{L}_{BAO, heta}}
ight] \end{aligned}$$

- Significance can be estimated as $\sqrt{\Delta\chi^2}.\sigma$
- However:
 - $\sqrt{\Delta\chi^2}.\sigma$ is only an approximation
 - Gives very wrong results for model-dependent C_{θ}

BAO detection with ΔI method

• Brute force method to get correct *p*-value (=significance)

$$\mathcal{H}_{0}: \exists \theta \in \Theta \text{ s.t. } \hat{\xi} \sim \mathcal{N} \left(\xi_{noBAO,\theta}, C_{noBAO,\theta} \right)$$
$$P(\Delta \chi^{2} \geq x \mid \mathcal{H}_{0}, \theta)$$
$$\mathbf{Mod}$$
$$p(x) = \max_{\theta \in \Theta} P(\Delta \chi^{2} \geq x \mid \mathcal{H}_{0}, \theta)$$

Model-dependent C_{θ}

• Replace test statistic $\Delta \chi^2$ by Δl $\rightarrow \Delta l =$ generalized likelihood ratio for model-dependent C_{θ}

$$\Delta l = \min_{\theta} l_{noBAO,\theta} - \min_{\theta} l_{BAO,\theta}$$
$$l_{BAO,\theta} = \chi^2_{BAO,\theta} + \ln |C_{BAO,\theta}|$$
$$l_{noBAO,\theta} = \chi^2_{noBAO,\theta} + \ln |C_{noBAO,\theta}|$$

Results for BAO detection under H_1 simulations

• Comparison of 3 methods for 2 different cases of covariance matrices

 $\mathcal{H}_0: \exists \theta \in \Theta \text{ s.t. } \hat{\xi} \sim \mathcal{N}\left(\xi_{noBAO,\theta}, C\right) \qquad \mathcal{H}_0: \exists \theta \in \Theta \text{ s.t. } \hat{\xi} \sim \mathcal{N}\left(\xi_{noBAO,\theta}, C_{noBAO,\theta}\right)$ $\mathcal{H}_1: \exists \theta \in \Theta \text{ s.t. } \hat{\xi} \sim \mathcal{N}\left(\xi_{BAO,\theta}, C\right)$

 $\mathcal{H}_1: \exists \theta \in \Theta \text{ s.t. } \hat{\xi} \sim \mathcal{N}\left(\xi_{BAO,\theta}, C_{BAO,\theta}\right)$

		Classical χ² method (wrong)	$\Delta \chi^2$ statistic with correct significance	Δl method
6	Constant covariance matrix	2.21 <i>o</i>	2.0σ	2.0 0
	Model-dependent covariance matrix	2.32 0	1.59 0	1.96 0
	ADA7 Conforma	Carradosa Carcica May 2012		

IV) BAOs for cosmological parameter constraints

What is the effect of model-dependent C_{θ} for parameter constraints

$\mathcal{H}_1: \exists \theta \in \Theta \text{ s.t. } \hat{\xi} \sim \mathcal{N}\left(\xi_{BAO,\theta}, C_{BAO,\theta}\right)$

Conclusions

Conclusions

- New procedure for obtaining realistic model-dependent C_{θ}
- New method for BAO detection (Δl method)
 - Rigorous
 - Works even with model-dependent C_{θ}
- Consequence of model-dependent covariance C_{θ} for SDSS DR7 LRG sample:
 - Can have a non-negligible effect, should be tested for future surveys like BOSS

New procedure for simulations

- New procedure to compute model-dependent C_{θ}
 - Generate 2000 simulations for each value $\Omega_m h^2 = 0.08, 0.105, 0.13, 0.155, 0.18$
 - Geometric parameter α taken into account by introducing a selection function ϕ_{α} (0.8< α <1.2)
 - *b* is well approximated by a factor *b*⁴ in the covariance matrix
 → when changing *b*₁=2.5 to *b*₂=3.0 we find that (*b*₂/*b*₁)⁴ *C*₁ is 10 times closer to *C*₂ than *C*₁

Correlation in BOSS DR9

- Public release expected in July 2012
- 6σ BAO detection !

Effect of model-dependent covariance matrix in constraints

• Cosmological parameter constraints

26

$$p(\Omega_m h^2, lpha \,|\, \hat{\xi}) \propto \int \mathcal{L}_{BAO,(\Omega_m h^2, lpha, B)} dB$$

• Example with expected correlation from simulations

BAO detection with classical χ^2 method (II)

• The test statistic $\Delta\chi^2$ is a generalized likelihood ratio

$$\Delta \chi^{2} = \min_{\theta} \chi^{2}_{noBAO,\theta} - \min_{\theta} \chi^{2}_{BAO,\theta}$$
$$= -2 \left[\max_{\theta} \ln \left(\mathcal{L}_{noBAO,\theta} \right) - \max_{\theta} \ln \left(\mathcal{L}_{BAO,\theta} \right) \right]$$
$$= -2 \ln \left[\frac{\max_{\theta} \mathcal{L}_{noBAO,\theta}}{\max_{\theta} \mathcal{L}_{BAO,\theta}} \right]$$

- Large values of $\Delta \chi^2$ favor H_1 \longrightarrow significance is proba under H_0 that $\Delta \chi^2 >$ observed value
 - Given some assumptions:

$$\Delta \chi^2 \leq X^2$$
 with $X \sim \mathcal{N}(0,1)$ under \mathcal{H}_0

• Significance can be estimated as $P(X^2 > \Delta \chi^2)$ i.e. $\sqrt{\Delta \chi^2}.\sigma$

Our new method for BAO detection (II)

- Change of the statistic
 - $\Delta \chi^2$ is not a generalized likelihood ratio for model-dependent covariance matrix

$$\mathcal{L}_{BAO,\theta} \propto |C_{BAO,\theta}|^{-1/2} e^{-\frac{\chi^2_{BAO,\theta}}{2}}$$
$$\mathcal{L}_{noBAO,\theta} \propto |C_{noBAO,\theta}|^{-1/2} e^{-\frac{\chi^2_{noBAO,\theta}}{2}}$$

• We use Δl instead of $\Delta \chi^2$ to keep a generalized likelihood ratio

$$\Delta l = \min_{\theta} l_{noBAO,\theta} - \min_{\theta} l_{BAO,\theta}$$
$$l_{BAO,\theta} = \chi^2_{BAO,\theta} + \ln |C_{BAO,\theta}|$$
$$l_{noBAO,\theta} = \chi^2_{noBAO,\theta} + \ln |C_{noBAO,\theta}|$$