
Introduction to
Machine Learning & Deep Learning

PEAT
15/03/2017

Outline

I. Machine Learning

II. Deep Learning & ConvNets

Outline
 I. Machine Learning

 a. Context

 b. Capacity / Underfitting / Overfitting

 c. Choice of model

 d. Hyperparameters / Validation Set

II. Deep Learning & ConvNets

What is Machine Learning ?
● Machine Learning = algorithms able to

automatically learn from data or experience

● Supervised Learning
○ Data is labeled

● Unsupervised Learning
○ Data is not labeled

● Reinforcement Learning
○ AI strategy refined by interactions/rewards from

an environment

Examples of tasks
● Classification

○ From input data X, predict probability pk for each
class (PEAT example: X=image, k=1 for healthy,
k=2 for aphid, k=3 for anthracnose, ...)

● Regression
○ From input data X, predict a value Y

(example: forecasting market prices)

● Compression
○ Compress signals with minimum information

loss (example: jpeg)

● Game AI
○ Play ATARI games or GO

Examples of tasks

Performance Measures
● Supervised Learning: Input X, Target Y, Prediction Ŷ(X)

● Loss function defines the cost of mistakes: L(Y,Ŷ)

Classification
● Target Y:

Y = (Y1,...,Yk,...,Yn) = (0,...,1,...,0)

● Prediction Ŷ(X) = proba of each class:
Ŷ = (p1,...,pk,...,pn) with ∑i pi=1

● Top-1 accuracy:
1 if pk is largest pi, 0 otherwise

● Top-5 accuracy:
1 if pk in 5 largest pi, 0 otherwise

Regression
Target Y

Prediction Ŷ(X)

Absolute Error Loss:
L = |Y - Ŷ|

Square Error Loss:
L = (Y - Ŷ)2

Model Training
● We are given:

○ Task T
○ Loss L for mistakes
○ Training set: (X1,Y1), … , (XN,YN)

● We choose class of models (e.g. ConvNets, Decision Trees, ...):
Ŷ(X) = fӨ(X)

● For a given choice of parameter Ө, total loss function on training set:
Ltot = ∑j L(Yj,Ŷj) = ∑j L(Yj,fӨ(Xj))

● Model training = Optimizing Ө in order to minimize total loss

Outline
 I. Machine Learning

 a. Context

 b. Capacity / Underfitting / Overfitting

 c. Choice of model

 d. Hyperparameters / Validation Set

II. Deep Learning & ConvNets

Generalization / Test Set
● Main goal of Machine Learning: predict new input correctly

● So far, we have simply described a minimization of the loss on training data

● However Machine Learning ≠ pure Optimization
○ What we care about is the loss on new input (= generalization loss)
○ Generalization loss is estimated on a separate test set (not seen during training)

● A Machine Learning model performs well under 2 conditions:
○ The training loss is small
○ The gap between training loss and generalization loss is small

Underfitting / Overfitting
● Underfitting:

○ The training loss is too large
○ This happens when the model space is too constrained

● Overfitting:
○ The gap between training loss and generalization loss is too large
○ This happens when the model space is not constrained enough

Model Capacity / Regularization
● Optimal point comes from a balance of Underfitting and Overfitting:

○ A model space sufficiently large to have small training loss
○ A model space not too large to avoid large gap between training loss and generalization

loss

● We control these 2 effects by altering the model capacity:
○ It can be controlled by varying the number of parameters in the model
○ It can also be controlled with regularization

Regularization
● Can be seen as introducing a prior knowledge

● Dataset Augmentation
○ Create fake data that increase the size of the training set
○ For image classification, we can introduce random

translations, rotations, change of luminosity, ...
○ Introduced prior knowledge: image class is invariant under

these transformations

● Multi-task learning
○ Share parts of the model between different tasks
○ For image classification, we can share first layers between

several image classification tasks
○ Introduced prior knowledge: some features can be shared

between different tasks (edges, corners, textures, …)

Outline
 I. Machine Learning

 a. Context

 b. Capacity / Underfitting / Overfitting

 c. Choice of model

 d. Hyperparameters / Validation Set

II. Deep Learning & ConvNets

Usual models
● Support Vector Machines (classification) / Support

Vector Regression (regression)

● Decision trees / Random Forests

● Deep Learning
○ Fully-Connected Networks
○ Convolutional Neural Networks

(CNN - ConvNets)
○ Recurrent Neural Networks (RNN)

No Free Lunch Theorem
● Averaged over all possible random data distribution for X,Y

○ every Machine Learning model has the same error
○ no Machine Learning model is universally better

● So why are Deep Learning models working so well ?
○ Real-world distributions are fortunately not completely

random

● Different Machine Learning models encode different prior
knowledge about the function Ŷ = f(X)
○ ConvNets encode priors close to translation-invariance, and

that task can be accomplished by processing through a
hierarchy of features

○ Recurrent Neural Networks encode prior of stationarity
○ ...

Outline
 I. Machine Learning

 a. Context

 b. Capacity / Underfitting / Overfitting

 c. Choice of model

 d. Hyperparameters / Validation Set

II. Deep Learning & ConvNets

Hyperparameters / Validation set
● Standard model parameters

○ They are fit during model training to minimize loss on training data

● Hyperparameters:
○ Define higher level concepts about the model
○ Cannot be learned during model training
○ They need to be predefined before model training
○ They are optimized to minimize validation loss (=loss on validation set after model training)

● Some examples of hyperparameters:
○ Number and type of layers in a Convnet
○ Regularization parameters
○ Learning rate
○ …

Usual Workflow
● For usual Machine Learning tasks, we will thus divide our data into 3 sets:

○ Training set (typically 70% of data)
○ Validation set (typically 15% of data)
○ Test set (typically 15% of data)

● Then:
○ For different choices of hyperparameters, we perform model training

on the training set, and then compute the validation loss
○ We fix hyperparameters at the value minimizing validation loss
○ We then perform model training on the union of the training set and

validation set (to have more training data)
○ We evaluate the final precision of our model by computing the test

loss on the test set

Outline
 I. Machine Learning

II. Deep Learning & ConvNets

 a. History of Deep Learning

 b. Deep Learning

 c. Convets

History of Deep Learning
● Connectionism wave in the 1980s - 1990s

○ Central idea: a large number of simple computational units can achieve intelligent behavior
when networked together

○ Back-propagation algorithm
○ Lasted until mid 1990s: at this point Neural Networks did not fulfill expectations, and other

competing approaches made advances
○ Main problems: too small datasets, algorithms too computationally expensive

● Deep Learning revival from 2006:
○ “Deep” to emphasize the importance of depth
○ Dataset sizes increased dramatically (digitization of society, big data)
○ Model sizes also increased, thanks to software and hardware advances (in particular general

purpose GPU)
○ Some theoretical advances (ReLU, Batch Normalization, Dropout, Inception, ResNet, LSTM, ...)
○ Huge success and impact in many fields (object recognition, speech recognition, robotics, NLP,

Recommendation systems…)

Dataset and Model sizes
● A rough rule of thumb for supervised deep learning

algorithm:
○ Acceptable performance with around 5,000 labeled

examples per category
○ Match or exceed human performance with a

dataset > 10 million labeled examples

● Dataset sizes increased dramatically (from a few
hundreds-thousands to now several million)

● Model sizes also increased exponentially (interpolate to
human brain complexity in 40 years)

Deep Learning successes
● Super-human performance in Object Recognition

● Super-human performance in Speech Recognition

● State of the art in many Natural Language Processing
(NLP) tasks

● Super-human game AI (Atari games, GO, Poker, …)

● Self-driving cars

Outline
 I. Machine Learning

II. Deep Learning & ConvNets

 a. History of Deep Learning

 b. Deep Learning

 c. ConvNets

Basic Blocks
● Neural Networks inspired by biological brain

● Networks are organized in successive layers, and each layer consists of many neurons
(also called units), that are the basic blocks of the network

● Each neuron receives input from neurons in previous layer, makes a weighted sum and
applies a nonlinear activation function

● Early networks applied a sigmoid activation function, but modern networks mostly use
ReLU

Network Types
● Fully-Connected Neural Networks

○ Standard Network Architecture
○ Each layer is fully connected to the next layer

● Convolutional Neural Networks
○ Used for signal and image processing

● Recurrent Neural Networks:
○ Used for sequence modeling (e.g. NLP)

Representation Learning - Depth
● Classic Machine Learning

algorithms require
hand-crafted features as
inputs

● Artificial Neural Networks learn
features by themselves

● Deep Neural Networks learn
several layers of features by
themselves

Demo
http://playground.tensorflow.org

http://playground.tensorflow.org

Outline
 I. Machine Learning

II. Deep Learning & ConvNets

 a. History of Deep Learning

 b. Deep Learning

 c. ConvNets

Success with ConvNets
● ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) competition = annual world cup

for Image Classification

● For the first time in 2012, a CNN ranked first and decreased best error rate from 25% to 17%

● From this time, only CNN won the competition

● The error rate continued to drop very quickly, and now the best results are super-human

Convolution layers
● The main building blocks of Convolutional Neural Networks

are Convolutional layers

● A convolution is the result of sliding a filter on a grid
○ The filter is local (its area is called the receptive field)
○ The filter is constant throughout the grid

● Introduced prior knowledge:
○ Due to translation-invariance, features describing

objects should be independent of the position in the
image

○ Features describing objects should only be local

Convolutional layers
● Each convolutional layer has different channels, where each channel correspond to a single filter

● Layers are 3D
○ In the input: 3D = 2D (position in the image) + 1D (color channels)
○ In further layers: 3D = 2D (position in the image) + 1D (different filters)

● Filters are 3D
○ local in the 2 image dimensions
○ global in the 3rd dimension

ConvNets in 2012
● First CNN that won ImageNet challenge:

○ A few successive convolutional layers
○ Pooling layers that progressively reduce spatial dimensions
○ Followed by a few fully connected layers

● Fully connected layers:
○ only 10% of computation time
○ 90% of the parameters

ConvNets now
● Now revolution of depth

● Google Inception v1 (ImageNet 2014 winner): 22
layers

● ResNet (ImageNet 2015 winner): 152 layers

● Inception Resnet v2: 467 layers

Visualizing ConvNets

Visualizing ConvNets

Thank you !

