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Context

Deep neural networks have been tremendously successful in

many applicaঞons. Yet, there is sঞll a lack of a mature theory

able to validate the full choice of hyperparameters associatedwith

state-of-the-art performance.

A large branch of research aimed at building this theory has fo-

cused on networks at the ঞme of random iniࢼalizaࢼon. The jus-

ঞficaঞon is twofold:

1. Due to the randomness of model parameters at

iniঞalizaঞon, networks at that ঞme may serve as a proxy for

the full hypothesis space

2. Pathologies in neural networks at iniঞalizaঞon are likely – in

any case – to penalize training by hindering opঞmizaঞon

Contributions

1. We introduce a novel approach to characterize deep neural
networks at iniঞalizaঞon:
the treatment of the broad spectrum of pathologies is unified

only mild assumpঞons are required

convoluঞonal layers, batch normalizaঞon, skip connecঞons are easily

incorporated

2. Using this approach, we characterize deep neural networks

with the most common choices of hyperparameters

Propagation
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Methodology— Data Randomness

First, we introduce the data randomness coming from the input signal x, the input noise dx, and – in the convoluঞonal
case – the spaঞal posiঞon α. At this point, model parameters are fixed.

Effective Rank — Pathology of One-Dimensional Signal

The effecঞve rank is defined as:
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the covariance matrix of yl

α,:
and (λi) its eigenvalues.
reff(yl) measures the number of effecࢼve direc-

onsࢼ which concentrate the variance of yl
α,:.

The pathology of one-dimensional signal

is characterized by:

reff(yl) l→∞−−−→ 1.

This pathology implies that yl
α,: becomes

line-like concentrated.

The consequence is that layers l′ > l only
“see” a single feature from the signal.
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Normalized Sensitivity — Pathology of Exploding Sensitivity

The normalized sensiঞvity is defined as:

χl ≡

SNR0

SNRl
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,with SNRl ≡
Tr Cx,α
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Neural networks with χl > 1 degrade the signal-

to-noise raࢼo, i.e. are noise amplifiers.

Neural networks with χl < 1 enhance the signal-
to-noise raࢼo, i.e. are noise reducers.

The pathology of exploding sensiঞvity is

characterized by:

χl ≥ exp(γl) l→∞−−−→ ∞, for some γ > 0.

This pathology implies that yl
α,: becomes

drowned in the noise dyl
α,:.

The consequence is that layers l′ > l only
“see” noise.
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Methodology— Model Parameters Randomness

Second, we introduce the model parameters randomness at the ঞme of random iniঞalizaঞon. We suppose that the iniঞal-

izaঞon is standard [1, 2].

The key of our methodology consists in treaঞng reff(yl), χl as random variables which depend on model parameters.

Results — Gaussianity

Vanilla
Nets

For fixed data and random model pa-

rameters, the distribuঞon of yl may be-

come non-Gaussian at high depth.

Batch-Normalized
Feedforward Nets

For fixed data and random model pa-

rameters, the distribuঞon of yl may be-

come non-Gaussian at high depth.

Batch-Normalized
ResNets

For fixed data and random model pa-

rameters, the distribuঞon of yl remains

Gaussian at all depths.
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Results — Pathologies

Vanilla
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Theory:

1 . δχl ≡ χl

χl−1 .
√
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If δχl l→∞−−−→ 1, then reff(yl) l→∞−−−→ 1

Experiments:

Limited growth of the normalized

sensiঞvity: δχl l→∞−−−→ 1
Pathology of one-dimensional signal:

reff(yl) l→∞−−−→ 1
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Batch-Normalized
Feedforward Nets

Theory:
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Experiments:

Pathology of exploding sensiࢼvity:

χl ≥ exp(γl) l→∞−−−→ ∞, for some γ > 0
Few direcঞons of signal variance

preserved in reff(yl)
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Batch-Normalized
ResNets
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Experiments:

Power-law growth of the normalized

sensiঞvity χl

Many direcঞons of signal variance

preserved in reff(yl)
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Feedforward Nets are Pathological — Batch-Normalized ResNets areWell-Behaved

There are two opposing forces at work:

The addiঞvity with respect to width of affine transforms, which repels from pathologies and a�racts to Gaussianity

The mulঞplicaঞvity with respect to depth of layer composiঞon, which a�racts to pathologies and repels from Gaussianity

Because they are subject both to addiࢼvity and mulࢼplicaࢼvity, feedforward nets are pathological at high depth.

Because they are subject to addiࢼvity but relieved frommulࢼplicaࢼvity, batch-normalized resnets are well-behaved at all depths.

Details of the Experiments
All our experiments were

made with convoluঞonal

networks of width 512 on
CIFAR-10. alabaঞe/moments-dnns
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