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many applications. Yet, there is still a lack of a mature theory
able to validate the full choice of hyperparameters associated with Input signal: x
state-of-the-art performance. Input noise: dx
A large branch of research aimed at building this theory has fo- 2 2 2
cused on networks at the time of random initialization. The jus- [COIHV ] [COIHV ] [COIHV ]
tification is twofold: y0 = B (x)
1. Due to the randomness of model parameters at dy" = Op(x + dx) — Oy(x)
initialization, networks at that time may serve as a proxy for f
the full hypothesis space
2. Pathologies in neural networks at initialization are likely - in
any case — to penalize training by hindering optimization 1 5
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1. We introduce a novel approach to characterize deep neural ReLLU | ReLLU | ReLLU |
networks at initialization: I 2 I 2 I 2
= the treatment of the broad spectrum of pathologies is unified LCOHV J L Conv | LCO_HV J
= only mild assumptions are required
= convolutional layers, batch normalization, skip connections are easily é(—
Incorporated T
2. Using this approach, we characterize deep neural networks y = Py(x)
with the most common choices of hyperparameters dy' = &y(x + dx) — O)(x)

Methodology — Data Randomness

First, we introduce the data randomness coming from the input signal x, the input noise dx, and - in the convolutional
case — the spatial position «.. At this point, model parameters are fixed.

Effective Rank — Pathology of One-Dimensional Signal

The effective rank is defined as:

The pathology of one-dimensional signal
IS characterized by:
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with Cx [y” the covariance matrix of y?,. This pathology implies that y!, . becomes A N
and () its eigenvalues. line-like concentrated. T
ress(y') measures the number of effective direc- The consequence is that layers I’ > [ only
tions which concentrate the variance of y, . see’ a single feature from the signal.
Normalized Sensitivity — Pathology of Exploding Sensitivity
The normalized sensitivity is defined as: The pathology of exploding sensitivity is Signal
1 [ z } characterized by: o Class 1
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Neural networks with x! > 1 degrade the signal-  This pathology implies that y,. becomes e
Signal + Noise

to-noise ratio, I.e. are noise amplifiers.

Neural networks with ¥! < 1 enhance the signal-
to-noise ratio, 1.e. are noise reducers.

drowned in the noise dy, ..

The consequence is that layers I’ > [ only
‘see’ noise.

Methodology — Model Parameters Randomness
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Results — Gaussianity

Vanilla
Nets

For fixed data and random model pa-
rameters, the distribution of y' may be-
come non-Gaussian at high depth.

Batch-Normalized
Feedforward Nets

For fixed data and random model pa-
rameters, the distribution of y! may be-
come non-Gaussian at high depth.

Results — Pathologies

Batch-Normalized
ResNets

For fixed data and random model pa-
rameters, the distribution of y' remains
Gaussian at all depths.

Vanilla
Nets

Theory:
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= If 0y 225 1, then res(y!) — 1

Experiments:

= Limited growth of the normalized
sensitivity: 6yl 2% 1
= Pathology of one-dimensional signal:
[\ [—00
ref(y’) 1

10

0 50 100 150 200

Batch-Normalized
Feedforward Nets

Theory:

[
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Experiments:

= Pathology of exploding sensitivity:
x! > exp(l) 2% 0, for some v > 0

= Few directions of signal variance
preserved in reg(y')

1015 - X

1010
10°
0

10 0 50 100 150 200

!
r eff(y )

20

Batch-Normalized

ResNets
Theory:
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Experiments:

= Power-law growth of the normalized
sensitivity !

= Many directions of signal variance
preserved in reg(y')
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Feedforward Nets are Pathological — Batch-Normalized ResNets are Well-Behaved

There are two opposing forces at work:

= The additivity with respect to width of affine transforms, which repels from pathologies and attracts to Gaussianity
= The multiplicativity with respect to depth of layer composition, which attracts to pathologies and repels from Gaussianity

Because they are subject both to additivity and multiplicativity, feedforward nets are pathological at high depth.
Because they are subject to additivity but relieved from multiplicativity, batch-normalized resnets are well-behaved at all depths.

Second, we introduce the model parameters randomness at the time of random initialization. We suppose that the initial-

ization is standard [1, 2].

The key of our methodology consists in treating rer(y'), X' as random variables which depend on model

parameters.

Details of the Experiments
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All our experiments were
made with convolutional
networks of width 512 on
CIFAR-10.
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