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Context (I)
The recent years have seen huge advances in deep neural network (DNN) architectures, 
initialization, regularization. 

In contrast, there is still no mature theory able to validate the full choice of hyperparameters
leading to state-of-the-art performance.

This is unfortunate since such theory would provide a principled way of guiding:

1. A good choice of hyperparameters for new problems / setups

2. Further refinement in the choice of hyperparameters for known problems / setups



Context (II)
A large branch of research aimed at building this theory has focused on networks at 
initialization. 

The justification is twofold:

1. Characterizing networks with randomly sampled model parameters amounts to 
characterizing the inductive bias of the architecture

2. The initialization has an importance in itself as the starting point of the optimization

In practice, “good properties” at initialization were found to be highly predictive of trainability 
and post-training performance (Schoenholz et al., 2017; Yang & Schoenholz, 2017; Xiao et al., 
2018; Philipp & Carbonell, 2018; Yang et al., 2019).



Related work (I)
This case of DNNs at initialization still involves difficulties

● Difficulty to deal with the complex interplay of the 2 sources of randomness:
○ The input data

○ The model parameters

● Difficulty to deal with the whole spectrum of potential “bad properties”
● Difficulty — paradoxically — to deal with the finite number of units in each layer

● Difficulty to incorporate hard-to-model components of state-of-the-art DNNs:

○ Convolutional layers
○ Batch normalization

○ Skip-connections

○ etc



Related work (II)
The most commonly used methodology is known as “mean field”:
● It assumes that DNNs are well approximated by Gaussian processes (limit of infinite 

width for any given depth)

○ The input data corresponds to the index of the Gaussian process
○ The model parameters correspond to the stochasticity of the Gaussian process

○ The Gaussian Process is fully described by its kernel

○ This approximation breaks down for feedforward nets at high depth
● It does not lead to straightforward definitions of “bad properties” of DNNs, so only 

specific cases of “bad properties” can be studied:

○ Exponential correlation / decorrelation of data points (Schoenholz et al., 2017; Xiao 
et al., 2018)

○ Exploding / vanishing gradients (Yang & Schoenholz, 2017; Yang et al., 2019)

● It does not allow an easy incorporation of conv layers, batch norm and skip-connections



Related work (III)
Other studies had similar limitations:

● Only specific cases of input data and pathologies were considered:
○ Exploding complexity of one-dimensional data manifolds (Raghu et al., 2017)

○ Exponential correlation / decorrelation of two data points (Balduzzi et al., 2017)

○ Exploding / vanishing gradients (Philipp et al., 2018)
● The hard-to-model components were either excluded or incorporated one at a time

In conclusion, all studies have been limited either in their scope or their simplifying 
assumptions.



Contributions
Two main contributions.

1. Introduction of a novel methodology to characterize convolutional and fully-connected 
DNNs at initialization:

a. Offers a unifying treatment of the whole spectrum of “bad properties” without any 

restriction on the input data
b. Requires only mild assumptions

c. Easily incorporates conv layers, batch norm, skip-connections

1. Using this methodology, characterization of the inductive bias of various architectures of 

DNNs:

a. Insights on the most suitable choices of architectures
b. Insights on the sensitivity to adversarial perturbations
c. Insights on the expressivity with depth



I. Methodology



Propagation
Simultaneous propagation of:
● The standard DNN signal 
● A small additive noise corrupting this signal

We will focus on 3 setups :

● Vanilla Nets: 
conv + ReLU

● Batch-Normalized Feedforward Nets:                              
conv + batch norm + ReLU

● Batch-Normalized ResNets:                                                        
conv + batch norm + ReLU + skip-connections



Data Randomness (I)
First, we introduce the source of randomness coming from the data:
● The input signal x
● The input noise dx
● The spatial position α

At this point, model parameters are fixed, i.e. DNNs define fixed mappings from inputs to 
outputs.

Our goal is to define the potential “bad properties” — referred as “pathologies” — of such 
fixed DNN mappings.



Effective Rank:

The effective rank measures the number of 
directions in which the signal effectively 
“lives”:

● = 1 when it “lives” on a line

● = 2 when it “lives” isotropically on a plane

● etc

Normalized Sensitivity:

The normalized sensitivity measures to which 
extent the DNN amplifies the noise with 
respect to the signal:

● DNNs with χl >1 are noise amplifiers
● DNNs with χl < 1 are noise reducers

Data Randomness (II)



Pathology of One-Dimensional Signal:

● The signal becomes line-like 
concentrated

● This pathology is incompatible e.g. with 
the one-hot target of multiclass 

classification (with effective rank typically 

equal to the number of classes minus 1)

Pathology of Exploding Sensitivity:

● The signal becomes drowned in the 

noise 

● This pathology might be compatible with 
low training loss but any corruption dx
on the test set will lead to the corrupted 

signal yl+dyl becoming pure noise

Data Randomness (III)



Model Parameters Randomness (I)
Finally, we introduce the randomness from model parameters at initialization. 

This initialization is supposed standard:

● Weights initialized following He et al. (2015) 

● Biases initialized with 0’s
● Scale batch norm parameters initialized with 1’s 

● Shift batch norm parameters initialized  with 0’s 

A high probability of pathology at initialization likely prevents training from proceeding 
normally.



Model Parameters Randomness (II)
Most results still hold with an initialization uniform in the constrained parameter space:

● With channels sampled independently
● With weights, biases, scale and shift batch norm parameters sampled uniformly in 

hyperballs 

A high probability of pathology under such initialization likely leads to:

● Untrainability if pathologies are incompatible with low training loss (e.g. one-dimensional 

signal)

● Poor generalization if pathologies are compatible with low training loss but unlikely to 
generalize (e.g. exploding sensitivity)



Further Notation and Assumption (I)
We denote geometric increments between layer l-1 and l with the prefix δ, i.e. δχl = χl / χl-1.

We write a ≲ b when a(1+εa) ≤ b(1+εb) with |εa| ≪ 1, |εb| ≪ 1 with high probability.



Further Notation and Assumption (II)
We assume that the width (i.e. the number of channels) is large:

● This assumption always holds in practice
● In contrast, the “mean field” approximation of DNNs as Gaussian Processes breaks down 

for feedforward nets at high depth

Vanilla 
Nets

CNNs of width 512
(fixed data, random model params)

Batch-Normalized 
Feedforward Nets

CNNs of width 512
(fixed data, random model params)

Batch-Normalized 
ResNets

CNNs of width 512
(fixed data, random model params)



II. Results



Vanilla Nets
Theory

Geometric increments δχl are bounded:

Only two possibilities of evolution:
1. Pathology of exploding sensitivity

2. Concentration of the signal on the semi-line 
generated by its average vector:

a. Pathology of one-dimensional signal

b. Subexponential growth of the normalized 

sensitivity χl

c. Pseudo-linearity, with each additional layer l
arbitrarily well approximated by a linear 

mapping

Experiments

We observe the possibility 2.



Theory

● Geometric increments δχl are bounded:

● If the signal has few directions of variance, then 
|δχl

BN-1| is non-negligible

● If the signal is not too fat-tailed, then |δχl
φ-1| is 

non-negligible

Experiments

● Only few directions of signal 

variance at high depth
● Pathology of exploding sensitivity

Batch-Normalized Feedforward Nets



Theory

● χl evolves as a power-law, due to the “dilution” 

of the residual path into the skip-connection 
path, with ratio of signal variance ∝ 1/ (l+1):

● The bounds on χl are obtained by integrating the 

log of the bounds on δχl

● Batch-normalized resnets are logarithmic 
versions of batch-normalized feedforward nets:

Experiments

● Many directions of signal variance

● Perfect power-law fit of χl

● Batch-normalized resnets are 

logarithmic versions of batch-

normalized feedforward nets

Batch-Normalized ResNets



Other Initialization / Activation
Replacing the standard initialization by the uniform initialization:

● For vanilla nets, either pathology of zero-dimensional signal or pathology of one-
dimensional signal 

● For batch-normalized feedforward nets and batch-normalized resnets, similar results

Replacing ReLU by tanh:

● For vanilla nets, either pathology of zero-dimensional signal (“ordered phase”) or 

pathology of exploding sensitivity (“chaotic phase”)
● For batch-normalized feedforward nets and batch-normalized resnets, similar results

All cases are equivalent in terms of presence / absence of pathologies.



Other Architectures 
Other normalized feedforward nets
● Instance Normalization (Ulyanov et al., 2016): similar to Batch Normalization
● Layer Normalization (Ba et al., 2016): zero-dimensional signal

● Group Normalization (Wu & He, 2017): in between Layer Normalization and Instance 

Normalization 

Normalized resnets are always logarithmic versions of normalized feedforward nets.

Unnormalized resnets
● Exploding activations 

● One-dimensional signal



III.Conclusions



Suitable Choices of Architectures
The main force attracting towards pathology is the multiplicativity of feedforward layer 

composition (conv and ReLU layers can be seen respectively as multiplication by a random 
matrix and multiplication by a random Bernouilli vector)

● Vanilla nets and batch-normalized feedforward nets are pathological at high depth since 

they are subject to plain feedforward multiplicativity
● Batch-normalized resnets remain well-behaved at all depths since the decaying ratio of 

signal variance ∝ 1/ (l+1) between residual and skip-connection paths effectively counters 

feedforward multiplicativity

Our analysis provides theoretical backing to the choices of hyperparameters leading to state-

of-the-art performance.



Adversarial Vulnerability
In all setups of ReLU nets, we find χl≳ 1:

● An overwhelming part of the hypothesis space has sensitivity larger than the typical 
variation in output 

● Equivalently, an overwhelming part of the hypothesis space is more sensitive to 

adversarial perturbations than identity mappings
➢ Identity mappings are themselves highly sensitive to adversarial perturbations in 

high dimension

➢ e.g. setting the 1st dimension equal to 0 in input — a very small perturbation in high 
dimension — leads to the 1st dimension equal to 0 in output

● So an overwhelming part of the hypothesis space is highly sensitive to adversarial 
perturbations in high dimension



Expressivity
There is a gap of expressivity between vanilla nets and batch-normalized feedforward nets:

● For vanilla nets, an overwhelming part of the hypothesis space has subexponential

expressivity with depth

● For batch-normalized feedforward nets, an overwhelming part of the hypothesis space 

has exponential expressivity with depth

● This gap is not absolute since any batch-normalized feedforward net can be expressed as 
a vanilla net by merging batch norm into conv layers

➢ So, there is no contradiction with early works on the exponential advantage of depth 

over width for vanilla nets (Telgarsky, 2015; Telgarsky, 2016; Bianchini et al. ,2014; 
Raghu et al., 2017; Poole et al., 2016; Bianchini et al., 2014, Montufar et al., 2014)

● This gap is still of significance since it is likely observed at initialization and after training



Thank you!

Paper: https://arxiv.org/abs/1811.03087

Blog Post: https://towardsdatascience.com/its-necessary-to-combine-
batch-norm-and-skip-connections-e92210ca04da

Code: https://github.com/alabatie/moments-dnns

https://arxiv.org/abs/1811.03087
https://towardsdatascience.com/its-necessary-to-combine-batch-norm-and-skip-connections-e92210ca04da
https://github.com/alabatie/moments-dnns

