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BATCH NORM
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1. Batch Norm normalizes the pre-activations 𝑿 of shape 𝐵,𝐻,𝑊, 𝐶 by:
• Subtracting the mean '𝜇! 𝑿 over (𝐵, 𝐻,𝑊)
• Dividing by the standard deviation '𝜎! 𝑿 over (𝐵, 𝐻,𝑊)
• The mini-batch statistics '𝜇! 𝑿 , '𝜎!(𝑿) are used to approximate the 

full-batch statistics 𝜇! 𝑿 , 𝜎! 𝑿

𝒀",$,%,! =
𝑿",$,%,! − '𝜇! 𝑿

'𝜎!(𝑿)
≈
𝑿",$,%,! − 𝜇! 𝑿

𝜎! 𝑿

2. Batch Norm reintroduces the 2 lost degrees of freedom with the scale and 
shift parameters 𝛽!, 𝛾! before the nonlinearity 𝜙:

𝒁",$,%,! = 𝜙(𝛾!𝒀",$,%,! + 𝛽!)
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Figure 1: The input tensor is divided into a number of line (1D) or plane (2D) slices. Each normalization technique
slices the input tensor differently and each slice is normalized independently of the other slices.

GhostNorm can be thought as an extension to BatchNorm, wherein the M dimension is divided into GM groups,
normalizing over C ⇥GM slices of (M/GM , F ) dimensions. Both GC and GM are hyperparameters that can be tuned
based on a validation set. All of the aforementioned normalization techniques are illustrated in Figure 1.

SeqNorm employs both GroupNorm and GhostNorm in a sequential manner. Initially, the input tensor is divided into
(M,GC ,C /GC , F ) dimensions, normalizing across M ⇥GC number of slices, i.e. same as GroupNorm. Then, once the
GC and C/GC dimensions are collapsed back together, the input tensor is divided into (GM ,M /GM , C, F ) dimensions
for normalizing over C ⇥GM slices of (M/GM , F ) dimensions.

Any of the slices described above is treated as a set of values S with one dimension. The mean and variance of S are
computed in the traditional way (see Equation 2). The values of S are then normalized as shown below.
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Once all slices are normalized, the output of the Norm layer is simply the concatenation of all slices back into the
initial tensor shape.

2.2 The effects of Ghost Normalization

There is only one other published work which has investigated the effectiveness of Ghost Normalization for small
and medium mini-batch sizes [17]. Therein, they hypothesize that GhostNorm offers stronger regularization than
BatchNorm as it computes the normalization statistics on smaller sample sizes [17]. In this section, we support that
hypothesis by providing insights into a particular source of regularization, unique to GhostNorm, that stems from
normalizing groups of activations during a forward pass.

Consider as an example the tuple X with (35, 39, 30, 4, 38, 26, 27, 19) values which can be thought as an input
tensor with (8, 1, 1) dimensions. Given to a BatchNorm layer, the output is the normalized version X̄ with values
(0.7, 1.1, 0.3,�2.2, 1.0,�0.1,�0.02,�0.8). Note how although the values have changed, the ranking order of the
activation values has remained the same, e.g. the 2nd value is larger than the 5th value in both X (39 > 38) and X̄
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✓ 1ST BENEFIT OF BATCH NORM: 
𝒀 IS CHANNEL-WISE NORMALIZED
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𝒀 is channel-wise normalized, i.e.
• 𝜇! 𝒀 = 0
• 𝜎! 𝒀 = 1

That means that:
• The network effectively uses its whole width
• The network effectively uses its whole depth
• In sum, the network effectively uses its whole capacity



✓ EFFECTIVE USE OF WIDTH
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Since 𝒀 is channel-wise normalized:
• All channels 𝑐 in 𝒀 have the same square means:

𝔼",$,% 𝒀",$,%,!& = 𝜇! 𝒀 𝟐 +𝜎! 𝒀 𝟐 = 1

• The fact that 𝔼",$,% 𝒀",$,%,!& = 𝔼",$,% 𝒀",$,%,!!& for all 𝑐, 𝑐′ implies that the network 
effectively uses its whole width.



✓ EFFECTIVE USE OF DEPTH
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0 0 0 0

less channel-wise normalised

Input distribution with 
positive channel-wise mean

Input distribution with 
negative channel-wise mean

Since 𝒀 is channel-wise normalized:
• 𝛾𝒀 + 𝛽 is “not too far” from channel-wise normalized
• 𝜙 “acts” on input distributions “not too far” from channel-wise normalized
• 𝜙 is effectively channel-wise nonlinear with respect to its input



✓ 2ND BENEFIT OF BATCH NORM: 
PRESERVATION OF EXPRESSIVITY
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If mini-batch statistics are good approximations of full-batch statistics:
• 𝛾𝒀 + 𝛽 can be made close to 𝑿 by choosing 𝛽! = 𝜇! 𝑿 and 𝛾! = 𝜎! 𝑿 :

𝛾!𝒀",$,%,! + 𝛽! = 𝜎! 𝑿 𝒀",$,%,! + 𝜇! 𝑿 = 𝜎! 𝑿
𝑿",$,%,! − '𝜇! 𝑿

'𝜎! 𝑿
+ 𝜇! 𝑿 ≈ 𝑿",$,%,!

Thus, networks with Batch Norm have approximately the same expressivity as 
unnormalized networks
• This might seem like a trivial property
• But it’s hard to retain this property while at the same time guaranteeing that 𝒀 is channel-

wise normalized



✗ PROBLEM OF BATCH NORM: BATCH DEPENDENCE
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The batch dependence is introduced when normalizing with mini-batch statistics instead of full-
batch statistics:

𝒀",$,%,! =
𝑿",$,%,! − '𝜇! 𝑿

'𝜎!(𝑿)

The random choice of samples in each mini-batch leads to a stochasticity of 𝒀:
• This stochasticity translates into a regularization of BN
• The regularization strength can only be decreased by increasing the ”normalization” mini-

batch size 𝐵
• On ImageNet, optimal performance requires 𝐵 ≥ 32
• On larger datasets, optimal performance would require even larger 𝐵

When the ”compute” mini-batch is smaller than the optimal ”normalization” mini-batch, an 
“expensive” synchronisation of Batch Norm’s statistics across several workers is required.



2. BATCH-INDEPENDENT ALTERNATIVES
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Figure 1: The input tensor is divided into a number of line (1D) or plane (2D) slices. Each normalization technique
slices the input tensor differently and each slice is normalized independently of the other slices.

GhostNorm can be thought as an extension to BatchNorm, wherein the M dimension is divided into GM groups,
normalizing over C ⇥GM slices of (M/GM , F ) dimensions. Both GC and GM are hyperparameters that can be tuned
based on a validation set. All of the aforementioned normalization techniques are illustrated in Figure 1.

SeqNorm employs both GroupNorm and GhostNorm in a sequential manner. Initially, the input tensor is divided into
(M,GC ,C /GC , F ) dimensions, normalizing across M ⇥GC number of slices, i.e. same as GroupNorm. Then, once the
GC and C/GC dimensions are collapsed back together, the input tensor is divided into (GM ,M /GM , C, F ) dimensions
for normalizing over C ⇥GM slices of (M/GM , F ) dimensions.

Any of the slices described above is treated as a set of values S with one dimension. The mean and variance of S are
computed in the traditional way (see Equation 2). The values of S are then normalized as shown below.
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Once all slices are normalized, the output of the Norm layer is simply the concatenation of all slices back into the
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2.2 The effects of Ghost Normalization

There is only one other published work which has investigated the effectiveness of Ghost Normalization for small
and medium mini-batch sizes [17]. Therein, they hypothesize that GhostNorm offers stronger regularization than
BatchNorm as it computes the normalization statistics on smaller sample sizes [17]. In this section, we support that
hypothesis by providing insights into a particular source of regularization, unique to GhostNorm, that stems from
normalizing groups of activations during a forward pass.

Consider as an example the tuple X with (35, 39, 30, 4, 38, 26, 27, 19) values which can be thought as an input
tensor with (8, 1, 1) dimensions. Given to a BatchNorm layer, the output is the normalized version X̄ with values
(0.7, 1.1, 0.3,�2.2, 1.0,�0.1,�0.02,�0.8). Note how although the values have changed, the ranking order of the
activation values has remained the same, e.g. the 2nd value is larger than the 5th value in both X (39 > 38) and X̄
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Figure 1: The input tensor is divided into a number of line (1D) or plane (2D) slices. Each normalization technique
slices the input tensor differently and each slice is normalized independently of the other slices.

GhostNorm can be thought as an extension to BatchNorm, wherein the M dimension is divided into GM groups,
normalizing over C ⇥GM slices of (M/GM , F ) dimensions. Both GC and GM are hyperparameters that can be tuned
based on a validation set. All of the aforementioned normalization techniques are illustrated in Figure 1.

SeqNorm employs both GroupNorm and GhostNorm in a sequential manner. Initially, the input tensor is divided into
(M,GC ,C /GC , F ) dimensions, normalizing across M ⇥GC number of slices, i.e. same as GroupNorm. Then, once the
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for normalizing over C ⇥GM slices of (M/GM , F ) dimensions.
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Once all slices are normalized, the output of the Norm layer is simply the concatenation of all slices back into the
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2.2 The effects of Ghost Normalization

There is only one other published work which has investigated the effectiveness of Ghost Normalization for small
and medium mini-batch sizes [17]. Therein, they hypothesize that GhostNorm offers stronger regularization than
BatchNorm as it computes the normalization statistics on smaller sample sizes [17]. In this section, we support that
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Figure 1: The input tensor is divided into a number of line (1D) or plane (2D) slices. Each normalization technique
slices the input tensor differently and each slice is normalized independently of the other slices.

GhostNorm can be thought as an extension to BatchNorm, wherein the M dimension is divided into GM groups,
normalizing over C ⇥GM slices of (M/GM , F ) dimensions. Both GC and GM are hyperparameters that can be tuned
based on a validation set. All of the aforementioned normalization techniques are illustrated in Figure 1.
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(M,GC ,C /GC , F ) dimensions, normalizing across M ⇥GC number of slices, i.e. same as GroupNorm. Then, once the
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Various batch-independent alternatives to Batch Norm have been proposed
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a given batch element
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a given batch element

Figure adapted from 
Dimitriou et al. 2020



✗ PROBLEMS WITH BATCH-INDEPENDENT ALTERNATIVES (I)
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It is hard to retain both beneficial properties of Batch Norm simultaneously:
• With Layer Norm: 𝒀 is far from channel-wise normalized
• With Instance Norm: expressivity is strongly altered
• Group Norm reaches a trade-off but not a real solution

Beneficial properties of Batch Norm

Batch independence𝐘 is channel-wise 
normalized

Expressivity is 
preserved

Batch Norm ✓ ✓ ✗
Layer Norm ✗ ✓ ✓
Instance Norm ✓ ✗ ✓
Group Norm ~ ~ ✓
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✗ PROBLEMS WITH BATCH-INDEPENDENT ALTERNATIVES (II)
In-house methodology
• Look at expectation and 

variance over batch elements 
of 𝜇",! 𝒀𝒍 and 𝜎",! 𝒀𝒍

• The sum of these four terms 
equals 1

Results
• Layer Norm: 1st term is 

dominant in deep layers
• Instance Norm: 2nd and 4th

terms are constrained to be 0
• Group Norm: middle ground 

between those 2 issues



3. PROXY NORM
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RATIONALE FOR PROXY NORM (I)
Can we fix the issues of batch-independent norms?

Fixing Instance Norm’s issue
• Can we restore the variances Var"[𝜇",! 𝒀 ] and Var"[𝜎",! 𝒀 ]? 
• That seems difficult…

Fixing Layer Norm’s issue
• Can we restore 𝜇! 𝒀 = 𝔼" 𝜇",! 𝒀 ≈ 0 and 𝜎! 𝒀 ≈ 𝜎!! 𝒀 for all 𝑐, 𝑐′?
• It turns out this is feasible!
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RATIONALE FOR PROXY NORM (II)
What causes 𝜇! 𝒀 ≉ 0 and 𝜎! 𝒀 ≉ 𝜎!! 𝒀 ?
• Convolutions and Layer Norm have little role in this
• The culprits are the affine transform 𝒀 ↦ 𝛾𝒀 + 𝛽 and the activation function 𝜙

Idea of Proxy Norm: cancel the effect of the affine transform and 𝜙
• Assimilate 𝒀 to a proxy variable ,𝒀~𝒩 /𝛽, 1 + 2𝛾 2 ≈ 𝒩 0,1
• Replace the activation by a proxy-normalized activation:

!𝒁 = PN−Act(𝒀) = 
! "𝒀$% &𝔼!𝒀[! ")𝒀$% ]

+,-!𝒀[! ")𝒀$% ]

Iterative guarantee of Proxy Norm. If 𝑌 is close channel-wise normalized, then:
• The assimilation of 𝒀 by D𝒀 is sensible 
• ,𝒁 after 𝜙 is close to channel-wise normalized
• 𝒀 at the next layer is close to channel-wise normalized
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✓ BENEFICIAL PROPERTIES WITH PROXY NORM



SUMMARY
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Batch Norm’s beneficial properties
Batch independence𝒀 is channel-wise 

normalized
Expressivity is 

preserved
Batch Norm ✓ ✓ ✗
Layer Norm ✗ ✓ ✓
Instance Norm ✓ ✗ ✓
Group Norm ~ ~ ✓
Layer Norm / Group Norm (w/ few groups) 
+ Proxy Norm

✓ ✓ ✓



4. RESULTS WITH PROXY NORM
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EXPERIMENTAL SETUP
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Architectures:
• ResNet / ResNeXt / EfficientNet

Tasks:
• ImageNet / CIFAR-10 / CIFAR-100

Conservative choices of batch size:
• Global batch size chosen independently of norms
• “Normalization” batch size with BN chosen close to the optimum

Regularization:
• BN introduces an inherent regularization
• We subtract away the effect of this by running each configuration without and with additional 

degrees of regularization



RESULTS ON IMAGENET

21

When subtracting away the effect of regularization, Group Norm + Proxy Norm’s performance 
consistently matches or exceeds Batch Norm’s performance.

Recipe for good performance on ImageNet: 
good performance ⇔ efficient normalization + efficient regularization



RESULTS ON IMAGENET ― EFFICIENTNETS
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On EfficientNets, none of the alternative batch-independent approaches from the literature 
matches Batch Norm:
• This was the starting point of the design of Proxy Norm



RESULTS ON IMAGENET ― TRAINING ACCURACY

23

Group Norm + Proxy Norm always outperformed other batch-independent approaches in 
terms of final training accuracy. 

The benefits of Group Norm + Proxy Norm are likely to increase for larger datasets:
• Validation accuracy will likely become more tied to training accuracy
• BN’s regularization will likely become more detrimental
• The recipe for good performance will likely become:

good performance ⇔ efficient normalization



RESULTS ON CIFAR
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Again, when subtracting away the effect of regularization, Group Norm + Proxy Norm’s 
performance consistently matches or exceeds Batch Norm’s performance.

Recipe for good performance on CIFAR: 
good performance ⇔ efficient normalization + efficient regularization



5. CONCLUSION
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CONCLUSION
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• Normalization is a critical component of deep neural networks to reach optimal performance for a 
given model size.

• With Batch Norm ― the go-to normalization in convolutional networks:
✓ 𝒀 remains channel-wise normalized and expressivity is preserved
✗ The batch dependence is incompatible with memory-efficient training

• With Layer Norm / Group Norm / Instance Norm:
✗ Either 𝒀 is “far” from channel-wise normalized or expressivity is not preserved
✓ The batch independence is compatible with memory-efficient training

• With the combination of Layer Norm / Group Norm (w/ few groups) and our technique Proxy Norm:
✓ 𝒀 remains channel-wise normalized and expressivity is preserved
✓ The batch independence is compatible with memory-efficient training



PROXY NORM’S PRACTICALITY
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How is Proxy Norm implemented? Is Proxy Norm always applicable?
• Nearly…
• Still favorable to have activation functions 

directly preceded by a normalization 
(ResNets v2 / ResNeXts v2 / EfficientNets)



FURTHER INFORMATION
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Paper 
Proxy-Normalizing Activations to Match Batch 
Normalization while Removing Batch Dependence,
A. Labatie, D. Masters, Z. Eaton-Rosen, C. Luschi, 
to appear in NeurIPS 2021

Blog post
Removing Batch Dependence in CNNs by 
Proxy-Normalizing Activations, A. Labatie, 
Towards Data Science, 2021


