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Abstract

We investigate the reasons for the performance degradation incurred with batch-
independent normalization. We find that the prototypical techniques of layer
normalization and instance normalization both induce the appearance of failure
modes in the neural network’s pre-activations: (i) layer normalization induces
a collapse towards channel-wise constant functions; (ii) instance normalization
induces a lack of variability in instance statistics, symptomatic of an alteration of
the expressivity. To alleviate failure mode (i) without aggravating failure mode (ii),
we introduce the technique “Proxy Normalization” that normalizes post-activations
using a proxy distribution. When combined with layer normalization or group nor-
malization, this batch-independent normalization emulates batch normalization’s
behavior and consistently matches or exceeds its performance.
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BATCH NORM Figure adapted from

Dimitriou et al. 2020

1. Batch Norm normalizes the pre-activations X of shape (B, H, W, C) by: Batch Norm /
«  Subtracting the mean ji.(X) over (B,H, W)
« Dividing by the standard deviation 6.(X) over (B,H, W)
« The mini-batch statistics fi.(X), 6.(X) are used to approximate the
full-batch statistics u.(X), g.(X)
Y, hoe = Xphwe — i(X) ~ Xphwe — e (X)
T 0c(X) oo (X)

2. Batch Norm reintroduces the 2 lost degrees of freedom with the scale and
shift parameters ., y. before the nonlinearity ¢:

Zpyhwe = ¢(chb,h,w,c + B¢)



v 15T BENEFIT OF BATCH NORM:
Y IS CHANNEL-WISE NORMALIZED

Y is channel-wise normalized, i.e.

* u(¥)=0
« o0.(Y)=1

That means that:

« The network effectively uses its whole width

« The network effectively uses its whole depth

* In sum, the network effectively uses its whole capacity



v EFFECTIVE USE OF WIDTH

Since Y is channel-wise normalized:
« All channels c in Y have the same square means:

Epnw|Ysnwel = uc(¥)? +a. (¥)2 =1

» The fact that Ep 1, |Y5 el = Epaw|YEnwe] for all ¢, ¢'implies that the network
effectively uses its whole width.



v EFFECTIVE USE OF DEPTH

Since Y is channel-wise normalized:

 yY + B is “not too far” from channel-wise normalized

« ¢ “acts” on input distributions “not too far” from channel-wise normalized
« ¢ is effectively channel-wise nonlinear with respect to its input

—0/ Input distribution with
/ positive channel-wise mean

A\
e

Input distribution with
negative channel-wise mean



v/ 2ND BENEFIT OF BATCH NORM:
PRESERVATION OF EXPRESSIVITY

If mini-batch statistics are good approximations of full-batch statistics:
 yY + B can be made close to X by choosing 8, = u.(X) and y, = g.(X):

b,h,w,c — ﬁc (X )
6.(X)

X
chb,h,w,c + B = JC(X)Yb,h,W,C + .uc(X) = O-C(X) + .uc(X) = Xb,h,w,c

Thus, networks with Batch Norm have approximately the same expressivity as
unnormalized networks

« This might seem like a trivial property

« Butit's hard to retain this property while at the same time guaranteeing that Y is channel-
wise normalized

@



X PROBLEM OF BATCH NORM: BATCH DEPENDENCE

The batch dependence is introduced when normalizing with mini-batch statistics instead of full-
batch statistics:

% _ Xb,h,w,c o ﬁc (X)
b,h,w,c — A~
y,vv, O-C(X)

The random choice of samples in each mini-batch leads to a stochasticity of ¥
« This stochasticity translates into a regularization of BN

* The regularization strength can only be decreased by increasing the "normalization™ mini-
batch size B

* On ImageNet, optimal performance requires B > 32
« On larger datasets, optimal performance would require even larger B

When the "compute” mini-batch is smaller than the optimal "normalization” mini-batch, an
“‘expensive” synchronisation of Batch Norm'’s statistics across several workers is required.
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BATCH-INDEPENDENT ALTERNATIVES

. _ _ Figure adapted from
Various batch-independent alternatives to Batch Norm have been proposed Dimitriou et al. 2020

Batch Norm Layer Norm Instance Norm Group Norm /

il i
C g
.whole layer per-channel feature map of group of feature maps of
of a given batch element 5 gjven batch element a given batch element
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X PROBLEMS WITH BATCH-INDEPENDENT ALTERNATIVES ()

It is hard to retain both beneficial properties of Batch Norm simultaneously:

With Layer Norm: Y is far from channel-wise normalized

With Instance Norm: expressivity is strongly altered

Group Norm reaches a trade-off but not a real solution

Beneficial properties of Batch Norm

Y is channel-wise

Expressivity is

Batch independence

Group Norm

normalized preserved
Batch Norm \/ \/ X
Layer Norm X \/ \/
Instance Norm \/ X \/
v
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X PROBLEMS WITH BATCH-INDEPENDENT ALTERNATIVES (lI)

In-house methodology

Look at expectation and
variance over batch elements

of up,(¥Y') and oy, . (Y!)

The sum of these four terms
equals 1

Results

Layer Norm: 1stterm is
dominant in deep layers

Instance Norm: 2" and 4t
terms are constrained to be 0

Group Norm: middle ground
between those 2 issues
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RATIONALE FOR PROXY NORM ()

Can we fix the issues of batch-independent norms?

Fixing Instance Norm’s issue
« Can we restore the variances Vary [y, (Y)] and Var,[ay, (Y)]?

 That seems difficult...

Fixing Layer Norm’s issue
- Can we restore u (Y) = Ep|up,(Y)| = 0 and 6.(Y) ~ g, (¥) forall ¢, c'?
« |t turns out this is feasible!
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RATIONALE FOR PROXY NORM (lI)

What causes u.(Y) # 0 and o,.(Y) # g.(Y)?
« Convolutions and Layer Norm have little role in this
« The culprits are the affine transform Y ~ yY + B and the activation function ¢

Idea of Proxy Norm: cancel the effect of the affine transform and ¢
- Assimilate Y to a proxy variable Y~V (5, (1 + #)2) ~ N (0,1)
* Replace the activation by a proxy-normalized activation:

¢(yY+B)-Eylp(yY+B)]
\/ Vary[¢(yY+B)]

Z = PN-Act(Y) =

Iterative guarantee of Proxy Norm. If Y is close channel-wise normalized, then:

* The assimilation of Y by Y is sensible
- 7 after ¢ is close to channel-wise normalized
e Y at the next layer is close to channel-wise normalized

@
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v BENEFICIAL PROPERTIES WITH PROXY NORM
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SUMMARY

Batch Norm’s beneficial properties

Y is channel-wise

Expressivity is

Batch independence

normalized preserved
Batch Norm V4 v X
Layer Norm X v v
Instance Norm N4 X v
Group Norm v
Layer Norm / Group Norm (w/ few groups) V4 V4 V4

+ Proxy Norm

@
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4. RESULTS WITH PROXY NORM
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EXPERIMENTAL SETUP

Architectures:
» ResNet/ ResNeXt / EfficientNet

Tasks:
« ImageNet/ CIFAR-10 / CIFAR-100

Conservative choices of batch size:
« Global batch size chosen independently of norms
* “Normalization” batch size with BN chosen close to the optimum

Regularization:
« BN introduces an inherent regularization

« We subtract away the effect of this by running each configuration without and with additional
degrees of regularization

@
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RESULTS ON IMAGENET

When subtracting away the effect of regularization, Group Norm + Proxy Norm’s performance
consistently matches or exceeds Batch Norm'’s performance.

Recipe for good performance on ImageNet:

@

good performance < efficient normalization + efficient regularization

Batch Norm Group Norm Group Norm + Proxy Norm
B Batch Norm w/ extra regul B Group Norm w/ extra regul B Group Norm + Proxy Norm w/ extra regul
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RESULTS ON IMAGENET — EFFICIENTNETS

On EfficientNets, none of the alternative batch-independent approaches from the literature
matches Batch Norm:

« This was the starting point of the design of Proxy Norm

depthwise convs group convs Batch Norm
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RESULTS ON IMAGENET — TRAINING ACCURACY

Group Norm + Proxy Norm always outperformed other batch-independent approaches in
terms of final training accuracy.

The benefits of Group Norm + Proxy Norm are likely to increase for larger datasets:
« Validation accuracy will likely become more tied to training accuracy
« BN's regularization will likely become more detrimental
* The recipe for good performance will likely become:
good performance < efficient normalization

GN GN+PN
B GN w/ extra regul B GN+PN w/ extra regul
o 82.5 <

80 g 80.0
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ol [ B
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RESULTS ON CIFAR

Again, when subtracting away the effect of regularization, Group Norm + Proxy Norm’s
performance consistently matches or exceeds Batch Norm’s performance.

Recipe for good performance on CIFAR:
good performance < efficient normalization + efficient regularization

BN GN GN+PN
EE BN w/ extra regul EE GN w/ extra regul EE GN+PN w/ extra regul
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CONCLUSION

« Normalization is a critical component of deep neural networks to reach optimal performance for a
given model size.

« With Batch Norm — the go-to normalization in convolutional networks:
v 'Y remains channel-wise normalized and expressivity is preserved
X The batch dependence is incompatible with memory-efficient training

« With Layer Norm / Group Norm / Instance Norm:
X Either Y is “far” from channel-wise normalized or expressivity is not preserved
v/ The batch independence is compatible with memory-efficient training

* With the combination of Layer Norm / Group Norm (w/ few groups) and our technique Proxy Norm:
v 'Y remains channel-wise normalized and expressivity is preserved
v/ The batch independence is compatible with memory-efficient training

26



PROXY NORM’S PRACTICALITY

How is Proxy Norm implemented? Is Proxy Norm always applicable?
def proxy_norm_act(y,

* Nearly...
activation_fn=tf.nn.relu, . o c .
proxy_epsilon=0.03, « Still favorable to have activation functions

num_samples=256) :

directly preceded by a normalization

TensorFlow 1 implementation of the proxy normalized activation step. R N 2 / R N X 2 / Eﬁ' . N
nmnn
def create_channelwise_variable(name, init): ( eS etS V eS e tS V ICIent etS)
num_channels = int(y.get_shape() [-1])
return tf.get_variable(name,
dtype=y.dtype,
shape=[1, 1, 1, num_channels],
initializer=tf.constant_initializer(init))
# scale and shift parameters after the norm
beta = create_channelwise_variable('beta', 0.0)
gamma = create_channelwise_variable('gamma', 1.0)

# real activations
Z = activation_fn(gamma * Y + beta)

# proxy activations
tilde_Y = uniformly_sampled_gaussian(num_samples)

tilde_Z = activation_fn(gamma * tilde_Y + beta)

# normalize real activations according to proxy statistics

proxy_mean, proxy_var = tf.nn.moments(tilde_Z, axes=[0], keepdims=True)
tilde_Z = (Z - proxy_mean) * tf.rsqrt(proxy_var + proxy_epsilon)

return tilde_Z

e .



FURTHER INFORMATION

Paper
Proxy-Normalizing Activations to Match Batch
Normalization while Removing Batch Dependence,

A. Labatie, D. Masters, Z. Eaton-Rosen, C. Luschi,
to appear in NeurlPS 2021
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‘We investigate the reasons for the performance degradation incurred with batch-
independent normalization. We find that the prototypical techniques of layer
normalization and instance normalization both induce the appearance of failure
modes in the neural network’s pre-activations: (i) layer normalization induces
a collapse towards channel-wise constant functions; (ii) instance normalization
induces a lack of variability in instance statistics, symptomatic of an alteration of
the expressivity. To alleviate failure mode (i) without aggravating failure mode (ii),
we introduce the technique “Proxy Normalization” that normalizes post-activations
using a proxy distribution. When combined with layer normalization or group nor-
malization, this batch-independent normalization emulates batch normalization’s
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Blog post

Removing Batch Dependence in CNNs by
Proxy-Normalizing Activations, A. Labatie,
Towards Data Science, 2021

THOUGHTS AND THEORY

Removing Batch Dependencein
CNNs by Proxy-Normalising
Activations

Memory-efficient convolutional neural network training

@ Antoine Labatie Jun24 - 9 min read o o @ @ E:Jr b

O ur novel technique “Proxy Norm” paves the way for more memory-  *

efficient training of convolutional neural networks. In our new
paper, the team at Graphcore found that Proxy Norm retains the benefits of 28



